NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult Fmr1 knockout mice.

نویسندگان

  • Brennan D Eadie
  • Jesse Cushman
  • Timal S Kannangara
  • Michael S Fanselow
  • Brian R Christie
چکیده

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability in humans. This X-linked disorder is caused by the transcriptional repression of a single gene, Fmr1. The loss of Fmr1 transcription prevents the production of Fragile X mental retardation protein (FMRP) which in turn disrupts the expression of a variety of key synaptic proteins that appear to be important for intellectual ability. A clear link between synaptic dysfunction and behavioral impairment has been elusive, despite the fact that several animal models of FXS have been generated. Here we report that Fmr1 knockout mice exhibit impaired bidirectional synaptic plasticity in the dentate gyrus (DG) of the hippocampus. These deficits are associated with a novel decrease in functional NMDARs (N-methyl-D-aspartate receptors). In addition, mice lacking the Fmr1 gene show impaired performance in a context discrimination task that normally requires functional NMDARs in the DG. These data indicate that Fmr1 deletion results in significant NMDAR-dependent electrophysiological and behavioral impairments specific to the DG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction.

Schizophrenia is characterized by reduced hippocampal volume, decreased dendritic spine density, altered neuroplasticity signaling pathways, and cognitive deficits associated with impaired hippocampal function. We sought to determine whether this diverse pathology could be linked to NMDA receptor (NMDAR) hypofunction, and thus used the serine racemase-null mutant mouse (SR(-/-)), which has less...

متن کامل

NR2B-dependent plasticity of adult-born granule cells is necessary for context discrimination.

Adult-generated granule cells (GCs) in the dentate gyrus (DG) exhibit a period of heightened plasticity 4-6 weeks postmitosis. However, the functional contribution of this critical window of plasticity to hippocampal neurogenesis and behavior remains unknown. Here, we show that deletion of NR2B-containing NMDA receptors from adult-born GCs impairs a neurogenesis-dependent form of LTP in the DG ...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

Effects of male phermoneses on neuronal morphology in the dentate gyrus of hippocampus of female Mice

Background & Aims: Neurogenesis in the adult mammal brain occurs throughout life. Adult neurogenesis has been clearly demonstrated in the sub granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus. Pheromones that plays an essential role in the development of the central nervous system. The male pheromones are involved in regulating neurogenesis in both the olfactory bulb and hippocam...

متن کامل

Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network.

Forming distinct representations of multiple contexts, places, and episodes is a crucial function of the hippocampus. The dentate gyrus subregion has been suggested to fulfill this role. We have tested this hypothesis by generating and analyzing a mouse strain that lacks the gene encoding the essential subunit of the N-methyl-d-aspartate (NMDA) receptor NR1, specifically in dentate gyrus granul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hippocampus

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2012